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Biological Integrity of Key Species and Habitats

Agenda Navigating the Workshop
Welcome! While we wait, please:
8:00 AM |Intro e Update your name to include your pronouns
8:10 AM |What can be learned from managing and organization
oxygen problems in the Baltic Sea?  Message Marielle with any access needs
8:55 AM | Species and food web responses to * Introduce yourself in the chat. We've muted
low dissolved oxygen in the Salish Sea participants and turned off your videos to

minimize technical issues, so we encourage

9:25 AM | Break
red you to use the chat to say hello instead

9:30AM | Q&A

9:45 AM | Biological impacts of low oxygen Questions or Comments?
levels on Puget Sound species * Add them to the chat
10:00 AM | Discussion * Raise your hand and we’ll unmute you

10:25 AM | Wrap-up

The slides, recording, and summary will be available on Puget Sound Institute’s website



https://www.pugetsoundinstitute.org/about/nutrient-management-and-resilient-waterways/
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- Unlv_ersm _ shingtor Sound Institute’s Role

Puget Sound Partnerships’ Marine Research, Modeling, and Monitoring to Targeted Technical Uncertainties
Water Quality Implementation Strategy - Reduce Uncertainties

_ Improve confidence in modeling of
. . .. B [ the Salish Sea and share findings
Nutrient Science Community in Kickoff (7/26)
Puget Sound Tools to Evaluate Water Quality
| (9/29)
Biological integrity of key habitats
and species (10/6)

HEALTHY WATER QUALITY

W UNIVERSITY of WASHINGTON | TACOMA

PUGET SOUND INSTITUTE SALISH?EA; - Upcoming WorkShOps

» Sediment exchange (10/17)
Help address technical uncertainties

and advance modeling tools to assist Phytoplankton and primary
Marion Waer Gty s Diosved decision-making. production (11/2)
Ozxygen ore . .
Facilitate scientific workshops and
regional collaboration

Change in interannual variability of
rivers and ocean impact (week of
11/14)

Convene Model Evaluation Group
Lead complementary model runs

Expand access to models, outputs,

Improve watershed modeling to
tools, and scientific knowledge P 8

evaluate source reduction strategies
to adaptively manage strategies
(week of 12/12)

Technical Uncertainties ' Refine Research Actions Improved Confidence in Actions




-i‘-e Qu-estion
How do we evaluate water quallty W|th the tools that we have reIatlve to the

needs of key speC|es food webs, and hab|tats’-’
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Build common‘knovﬂ adge around the suef'_-_ ;_
range of recovery efforts |
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WHAT CAN BE LEARNED FROM MANAGING OXYGEN
PROBLEMS IN THE BALTIC SEA?
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Jacob Carstensen, Aarhus University
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If you can’t breathe, nothing else matters

‘ . —
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Hypoxia is a growing global problem

@ Coastal hypoxic Areas z P \ Ji /o i; x\} “
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Breitburg et al., 2018, Science
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Well-studied areas: Gulf of Mexico

> Receives excess nutrients from the Mississippi River
watershed, stimulating production and creates
stratified conditions along the coastal margin

> On average 14000 km? affec

ted by hypoxia (<2 mg/L)

> June-August

Pitcher et al. (2021) S Ao

FeOeeEnog mz::::z:::;zss;f;:::f
[w 8w Predominantly range or barren land
2.4%] || Wetlands

Water




/ Dept of ECOSCIENCE I
v AARHUS UNIVERSITY University of Washington workshop 6 October 2022

Well-studied areas: Chesapeake Bay

> The largest estuary in
the US January w

Obsrrwsc] surmemes  mipon dissodeed]

: oxygen 2005 Foruary T TN
> Receives freshwater ; e T ————

from several large April T

rivers, although s SR
\ Early June T
Susquehanna is the {r Late June * N ]
dominant (>80%) "4 VAN WYY
Late July "m "
> Seasonal hypoxia of Earty August T Y
Lade August EE— | gptenat
about 10 km3 (volume!) hp“:w O
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Well-studied areas: Changjiang and Zhujiang estuaries

Area (Knt)

_.F'ﬂé;
Pitcher et al. (2021)
'::'. East China Sca Prog.Oceanogr.

» ce  Changjiang Estuary

mrre Zhujiang Estuary |
I - ] L] ' . |

1959 1981 1988 1998 1999 2002 2003 2005 2006 2011 2013
Year

Changjiang Estuary:
Seasonal hypoxia-
typically August for
(around 10-15.000 km?)
at depths of 20-50 m

Zhujiang Estuary:
Seasonal hypoxia (~1000
km?) in wet season
(lower part) at depths of
10-30 m and dry season

(upper part)
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Well-studied areas: Black Sea

> Natural hypoxia due to the restricted
ventilation of bottom waters

» Waters are sulfidic from about 100 m and
below

» The Black Sea was a lake until ca. 8000 years
ago

» The northwestern shelf has also experienced

L]

-200} 1
]
]

seasonal hypoxia i *. |
Pitcher et al. (2021) " | e |

Prog.Oceanogr. \ ;
i . i P I | S - o -

" 7 ] (] 17 16 20 1012 1014 1016
L= | [9t]
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Outline of talk

» Different types of how hypoxia manifests itself in different Baltic systems and the
mechanisms behind

» Central open basin (perennial)
» Entrance area/Danish Straits (seasonal)
» Coastal areas (episodic)

> Future trajectories of hypoxia in response to management and climate change
» Current policy frameworks
» The multiple synergistic and negative effects of warming

» Consequences of hypoxia

» Fauna
> Biogeochemical cycles






)te:"Nanna Rask




A century expansion of perennial hypoxia
in the Baltic Sea

Russia
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Seasonal hypoxia in.the western Baltic Sea

11.-24. august 2022 |5 12. - 22, september 2022
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Baltic Sea hypoxia takes many shapes and sizes

(El) Danish Straits Bornholm Basin Gotland Basin

Open central Baltic Sea
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MECHANISMS GOVERNING THE
OXYGEN SUPPLY




The Baltic Sea is naturally
prone to hypoxia

16 000 m3/s

Saltwater intrusions




Baltic Sea
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Recent expansion of perennial hypoxia

in the Baltic.Sea

Finland

Sweden

Estonia

i
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Finland
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Recent expansion of perennial hypoxia
in the Baltic Sea

Finland

Estonia

Sweden

Finland

Estonia

Latvia

~69000 km?

Lithuania

Poland
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MECHANISMS GOVERNING THE

 OXYGEN CONSUMPTION
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Nitrogen input from land (tons yr1)

Phosphorus input from land (tons yr?1)
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Particle shuttling contributes
to oxygen demand in-the
deep basins-

O GOB
o BP
5 GOF

[}
=]

]
=]

Primary settling
particles

DIC flux (mmol m™
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® Resettling particles . 100 150 200
Depth (m)

sediment age and inereasing sedimentary inventories of POC and chlorophyll a with normalised water depth. Our

calculations indicate that particle shuttling redistributes almost half of the deposited export production from ET

areas to A areas in the Baltic Proper, and that substantial amounts of terrestrial organic material are transported
™ L ]

' ‘Source: Nielsson et al. (2021) MarChem



Temperature enhances respiration
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SEASONAL HYPOXIA

IN THE WESTERN BALTIC SEA
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Skagerrak Kattegat Belt Sea Baltic Sea
September 2016
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EPISODIC HYPOXIA




Imported hypoxia from deep
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HYPOXIA IN THE FUTURE




DIFFERENT POLICIES APPLY TO DIFFERENT PARTS
OF THE BALTIC SEA

Offshore waters

Coastal zone

Six-year review ——
{ ~ aof the different
Pressures Status ] ‘a 1 . - slements

of the strategy
WATER FRAMEWORK
DIRECTIVE

2018 - 2021
Programmes of Measures should be

L e [ { ' {‘
e -t G 4 ¢
P i \ \
- \ { /
daesigned r.n.redur.u catchmant e \ y Ay GES 2020
pressures to improve ecosystem | i /i " Implementation

services rather than element 1l . \ ; 8 . ~ ,'- i of the
classifications s 7 ' : 7 RN oy Marine Strategy
al x \ SR ) 2016

Initial assessment,
objectives, targets
and indicators
2012 (+ 6 years)

Monitoring
programmes
2014

Programmes
J.- nf Measures

Programmes
of measures

acceptable ki

(meets WFD goals)
HELCOM BSAP

L) ,,
EU Marine Strategy

'] -'. b Hal ai % = =
z ,. unacceptable " Framework Directive
o (does not meet WFD goals) B ";

status secondary 1
supporting ele
(incl. oxygen) &




BALTIC SEA ACTION PLAN (2021)

Eutrophication
goal

v

“Baltic Sea unaffected
by eutrophication”

Effects of climate change
impacting eutrophication

‘f
&

9 0O

-‘
s ) <
ﬁﬁw A

S

Activities
addressed

vy fma

Pressures
addressed

01 0 d

506G targets
addressed

— 2.4 By 2030, ensure sustainable food
production systems and implement
resilient agricultural practices that increase
for adaptation to climate change, extreme
weather, drought, flooding and other disasters
and that progressively improve lond and soil

miaterials, halving the proportion of untreated
wastewaterand substantially increasing
reyling and safe reuse globally

6.5 By 2030, implement integrated water
resources management at all levels, including
ﬂmgh_ﬁ'msbmndﬂrycmpemﬁma&

appropriate
14.1 By 2025, prevent and significantly reduce
muarine pollution of all kinds, in particular from
land-based activities, including marine debris
and nutrient pollution
Further information on connection to other
treaties related to eutrophication can be found on
page 26,

(ross-reference with
other segments

— Reaching the objectives for eutrophication
is o necessity to meet the goal Baltic Sea
ecosystem is healthy and resilient’;

— Reaching the goal and objectives for sea-
based activities is o requirement for reaching
the goal for eutrophication.

Table 2a. Net nutrient input ceilings (NIC) of nitrogen for the HELLOM countries, non-HELCOM countries in the Baltic Sea catchment area, other countries
» with airborne input, Baltic Sea shipping and North Sea shipping (in tonnes/year).

Bothnian Bay BothnianSea  Baltic Proper

Gulf of Finland

Gulf of Riga

Danish Straits

| Denmark

Germany 3,920
1,148
Estonia 404

34,077
9,025
1,478

1,645
421
11,334

¥

1,747
462
13,099

Other countries

. with airborne input

Ukraine

Baltic Sea shipping

Morth Sea shipping

23,647
28,067
22



Outlook for the Baltic Sea

No quick recovery-from hypoxia
BREATHING LIFE INTO THE BALTIC

Models predict that the action plan to reduce nutrients that flow into the
Baltic Sea should be effective at increasing cuygen levels in the water.

== Reference (nutrient == Business as usual == Baltic Sea Action Plan

SOURCE: REF, 2

L=

input remains constant) {nutrient input increases) {nutrient input decreases)

2007 Baltic
Sea Action
§ Plan adopted R

co
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]
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o
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T w
=
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o
[Vl
3
o
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4=

l achieving 'good
ecological status'

i
-I*

fa2

Scenarios incorporate warming effects

1980 2000 2020 2040 2060

Sources: Meier et al. (2011) GRL and Conley (2012) Nature

| 2021: Deadline for |

2080



Outlook for the Danish Straits

A 4 °C temperature will double the hypoxic area

Source: Conley et al. (2009) Hydrobiol



Effect of management

What'if nutg'% inputs had not been reduced?
Jﬁ .-‘ L

Oxygen <4 mg L'

Oxygen <4 mg L
without the nutrient
management plans

~3000 km? ~7000 km?

Source: Andersen & Carstensen (2011) Politiken



SUMMARY: DRIVERS OF HYPOXIA

il
» The Baltic Sea is naturally prone to hypoxia due to its restricted .
exchange with the oceans .

>  Modern hypoxia in the Baltic Sea is driven by increased
nutrient input and is more intense and widespread than
observed in the geological past

» Saltwater inflows modulate hypoxia in the Baltic Sea giving a
short-term relief, but enhances stratification and hypoxia in the
long term

}) Seasonal hypoxia will become more frequent and hypoxia will
expand in a warmer climate without nutrient reductions
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Oxygen
affects
everything

Image modified from Breitburg et a., 2018

Biodiversity  Biogeochemistry Evolution/
Food webs Feedback to climate system Adaptation
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Habitat Physiological —  Fisheries
degradation Population level Economies
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Oxygen saturation, % — 40-25

WATER

Ced, whiting leave

25-10

Flounder,

‘ dab leave

Bivalves gape

SEDIMENT

E

Nephrups to surface

Polychaete
species change

Pearson & Rosenberg (1978)

10-5

University of Washington workshop

Effect on benthic fauna and their bioengineering

Thyasira
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Capitella,

Polydora

Polychaetes dominate
dominale

L3

Biomass reduced to '/

5-H,S
Bivalves, Ophiuroids rise
urchins die
RPD layer
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Few nematodes
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)

6 October 2022
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Deoxygenation increases energy flow to microbes
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The entire benthic community changes

o ~ 2
o © = Q o O o
—— o .—.OO o Ur(\ o®° 0~ OQCP 0° 8 o o
o 0 Uﬂfof‘o o o (s} Ie] CJO CI?DO o® o
o QO 0O o ©o o
o

Turnover time

- - -
- - -
’ ~ = -~ -

Biological Traits important for carbon and nutrient turnover and retention

« small

*  short-lived
* annuals

* fast-growing

* large

* |long-lived

* slow-growing
*  perennials

+  deep-dwelling bioturbators . Isgjaecnee_:mz::g\lp soreriner Carstensen et al. (2020)
*  high energy and CNP content per individuagly P AMBIO

individual
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Assessing the loss of benthic fauna — catastrophic year

- % 200z | Weeedtesl Y o Py "EJ ?
: s 7/ Estimated 300000 tons
<dmg/L = &? of benthic biomass was
— ( lost by comparing
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] E ! fw situation
el 18 S
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&/ 3 ,
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Hansen et al. (2003)
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Assessing the loss of benthic fauna — Baltic Sea

5
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Finland "ﬁg, 8. - 23. september 2020 -

P
Oxygen minimum "
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Estimated 3 mio. tons of benthic biomass is missing due to hypoxia Karlson et al. (2002)
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... and occasionally fish get caught in hypoxic waters
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Cod reproductive volume in the Baltic Sea
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Hypoxia reduces
sediment
denitrification and

creates N
feedback

Source: Jeremy Testa

University of Washington workshop

6 October 2022

Normoxic Conditions

NH}

Hypoxic Conditions




Hypoxia enhances P release from sediments

Sedimen-
tation of

o .}H ~|' o
Pho orus is boundyto Fe(CH)3 under
‘ox1c conditions and released b
Fe=reduction under anoxic con tions
i, i

Anoxic bottom



The “vicious” circle
Atmospheric loading Atmospheric

N release to the  Nutrient loading from
on inorganic N molecular N,
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SUMMARY: CONSEQUENCES OF HYPOXIA

Hypoxia alters the biogeochemical cycling of nutrients (redox-
dependent processes), enhancing recycling of N and P that
sustain eutrophication

Non-motile benthic species are naturally more tolerant to low
oxygen concentrations

... but also more susceptible to extended periods of hypoxia,
which alters the composition by loosing perennial engineering
species first

Fish are affected through habitat losses (benthic and pelagic),
making them more vulnerable to predation (including fishing)

Warming enhances the effects of hypoxia and therefore
nutrient reductions will be even more critical in the future



TAKE HOME MESSAGES FOR PUGET SOUND

T
The terminal inlets are naturally prone to low oxygen -
conditions due to the relelatively shallow thickness of the 2
bottom layer and reduced ventilation (seasonally) — similar to
the mechanisms some areas of the Danish Straits

The supply of oxygen is primarily governed by the physics, but |
the risk of oxygen demand outpacing oxygen supply increases
with eutrophication (enhanced supply of OM to the bottom)

Efforts to improve oxygen conditions can be counteracted by
climate change, e.g. from oxygen-poorer waters entering PS,
but this does not means that these efforts have been in wain



Species and Food Web
Responses to low dissolved
oxygen in the Salish Sea

Tim Essington
University of Washington
School of Aquatic and Fishery Sciences
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Main take home points

* Organisms have behavioral and physiological coping mechanisms that
vary across taxa

* Indirect effects stemming from coping mechanisms are likely but hard
to predict

* We have core biological knowledge to understand the types of
organismal responses in a risk-based framework



Gas physiology 101

Environment

Pressure gradient
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Gas solubility
Circulation rate

Tissue Demand

Organism



Coping with low dissolved oxygen?
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Coping with low dissolved oxygen?
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Coping with low dissolved oxygen?
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Responses to seasonal hypoxia:
acute vs. chronic effects



Intensity of Seasonal Hypoxia: South Hood Canal

Center Station
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BACI — Type Design

1 Impact site “Hoodsport”

3 Reference sites
Account for basin or other
effects related to bathymetic
profiles

unimpacted.

Seas_dnal h\/p0>"<“’i,§'?;f . A
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General Results
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Main Findings

Absent all of the Time Absent during low dissolved oxygen events



What about nearshore habitats?
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Gas physiology 101
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An Aside on Geoducks

Geoducks are rare at all depths in
southern region

Cannot be explained by substrate
availability
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Unexpected Food Web Effects
to low Dissolved Oxygen



Consequences of Distributional Shifts?

Moderate Tolerance

High tolerance




Consequences of Distributional Shifts?
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Moderate oxygen depletion = refuge
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Consequences of Distributional Shifts?

Depth

Severe oxygen depletion

Dissolved oxygen



Sampling Design
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Seasonal dynamics of O, by Site
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Expectations

* Lower predator-prey overlap

* Reduced feeding rate on zooplankton
* Increased zooplankton density

* Reduced predator density

Moderate oxygen depletion = refuge

Depth

uadAxo panjossig




Reality

* Lower predator-prey overlap NOPE

* Reduced feeding rate on zooplankton A LITTLE

* Increased zooplankton density NOPE, the OPPOSITE
* Reduced predator density NOPE, THE OPPOSITE



Herring were exposed to [O,] that were lethal in
ab studies, and expressed Hypoxia Inducible
-actor

Environment

Pressure gradient
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Estimating species
tolerances and forecasting




Moving forward: predicting effects in a

changing climate

* Metabolic index: ratio of
metabolic supply vs. demand
* Incorporates joint effects of

temperature and oxygen
e Estimating these in the lab
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Sablefish Distributions
in the California
Current

Can we identify oxygen
thresholds?

Does metabolic index improve
predictions?
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Yes!| Threshold effects are estimated!
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No! Metabolic Index gets confused ....
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Ongoing Activities

* Can we predict oxygen sensitivities via metabolic index when lab
experiments are lacking?
* Hierarchical modeling approach
* Nope
e Species Distribution Approach
* Working on it



Moving forward in Puget
Sound: A focus on Risk



Vulnerability Analysis

* Exposure — overlap between area of “bad” oxygen level (or metabolic
index) and species (by life stage)

* Consequence at species level
* Mortality
* Development
* Growth




Vulnerability Assessment: Dungeness Crab in the
California Current

Consequence
oS

Exposure

Pay attention to Dungeness Crab



Focus on Thresholds and Risk
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Thank you to funders

* National Science Foundation

* Washington Sea Grant

* Hood Canal Dissolved Oxygen Program
* NOAA Fisheries
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Questions?
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Tessa Francis

UW Puget Sound Institute

Biological
Impacts of low
oxygen levels on
Puget Sound
specles
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Biological impacts of low oxygen levels
to Puget Sound species

Objective:

= Describe potential risk to Puget Sound species (mostly fish) of
low oxygen levels in marine waters, using existing modeling
output and literature sources.




A risk assessment framework

Risk

Exposure +  Sensitivity




A risk assessment framework

Risk Exposure +  Sensitivity

Species distribution Physiological effects
Oxygen patterns




i, Exposure - |

= Species distribution
Atlantis Ecosystem Model

Hake_Large gadoids Spatial Distribution, g/km2

Perch Spatial Distribution, g/km2
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Courtesy of Hem Nalini Morzaria-Luna



. Exposure - |l

= Oxygen patterns
Salish Sea Model

Tomen @ SN S ML ey Ahmed et al. (2019)

2006 maximum dissolved oxygen depletions below the water
quality standard due to all anthropogenic sources



https://apps.ecology.wa.gov/publications/SummaryPages/1903001.html

= Literature review

Sensitivity

Q




Sensitivity

= Behavior
= |Lethal vs sublethal effects

= Life stage




Contents lists available at SciVerse ScienceDirect

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Linking land- and sea-based activities to risk in coastal ecosystems I X pOS u re

vice, National Oceanic and Atmospheric Administration,

Qualitative criteria Quantitative data

- Spatial overlap

Pressure
- Temporal overlap

Species

- Exploitation
Exposure

- Etc.

S  Moderate

QC. Low

Other criteria?




Contents lists available at SciVerse ScienceDirect

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Linking land- and sea-based activities to risk in coastal ecosystems S e n S Itlv I ty

Jameal F. Samhouri *, Phillip S. Levin

rthwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration,
/A 98112, USA

Qualitative criteria

1 2 3

- Severity of impact Severity of impact <10%  10-50%  >50%

: (pop.) loss loss loss
- Population

« Individual

- Current status

- Intrinsic recovery factors

« Replenishment rate

. Connectivity Other criteria?
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4

= Use an understanding Preparedness Highest priority
of risk to prioritize A for intervention
action

Industry

Sensitivity

Lower intensity

Low risk . :
intervention

Sensitivity

Exposure
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Take a multi-stressor approach
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= tessa@uw.edu

Thank you!







Wrap up

Upcoming Workshops

We’ll share the presentation materials, recording,

_ _ Sediment exchange (10/17)
and a summary of the discussion

Phytoplankton and primary production
Subscribe for updates at http://eepurl.com/h5nxsr  (11/2)

Change in interannual variability of rivers

* Share any people, programs, or studies we should and ocean impact (week of 11/14)

connect with

Improve watershed modeling to evaluate

e Continue the discussion source reduction strategies to adaptively
* Email Stefano Mazzilli (mazzilli@uw.edu) and manage strategies (week of 12/12)
Marielle Larson (marlars@uw.edu) to connect
directly

* Join the upcoming workshops to dig in further


http://eepurl.com/h5nxsr
mailto:mazzilli@uw.edu
mailto:marlars@uw.edu




Acidification 4 Oxygen Loss
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https://youtu.be/SfX2B5FU0Ss

vertical level

2014 Conditions (Whidbey Region)

Modeling Capacity and Interpretation e e

Streamlined analyses to existing parameters (e.g., dissolved oxygen, |
temperature, net primary production rates, etc.):
* Across time, depth, and location, including:
— Annually, seasonally, or daily
— By basin and embayment
* From a range of perspectives (e.g., absolute values, non-
compliance days, % volume days, etc. POXG (ma/] || .-
* Under scenarios with different loading inputs at each wastewater | % |
treatment plant and river
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Supporting Line of
Evidence: DO Variability

Annually, seasonally or daily:

* Minimum dissolved oxygen

* Dissolved oxygen variability

* Rate of dissolved oxygen change

* Number of hypoxia exposures

* Hypoxia exposure duration (hours)
e Hypoxia return time (hours)

e.g., Low et al. (2021)

—



https://www.nature.com/articles/s41598-021-89928-4
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