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Descriptive text for this sub-task (copied from the Work Plan):  
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future conditions, identification of areas where exempt wells are likely to affect stream flow, 
pressure on critical areas, etc.) 

 
Background 
The focus of this sub-task is on developing a model to simulate future land cover change due to 
development in the Puget Sound region. PSI’s decision to embark on this project grew out of an 
assessment of needs in 2020. It was clear that describing land cover change over the recent past, and 
anticipating change in the near future (e.g. next planning cycle), were well attended by others (e.g. 
Department of Commerce). Anticipating land cover change over multiple future decades was not. 
Similar projections had been initiated by two independent groups >10 years ago (led by John Bolte and 
Marina Alberti), but both efforts lapsed. PSI decided to develop of a spatially explicit simulation model 
intended to project land cover change over multiple decades. In parallel, PSP and John Bolte’s group 
Common Futures have begun a collaboration to compare outcomes of the current growth trajectory 
(‘Business As Usual’) with preferred alternative scenarios, yet to be specified, that could conceivably be 
achieved over the long-term future. Whereas the Common Futures approach to simulating change is 
‘agent-based’, PSI’s approach is algorithmically-based, by which the probability of future land cover 
change is based on a random forest algorithm identifying patterns based on variables known to be 
correlated with change in the recent past. The two approaches are complementary, each superior for 
different applications.  
 
PSI’s Approach to Simulation 
Rather than duplicating Common Futures’ agent-based approach, PSI is developing a State-and-
Transition Simulation model (STSM) to model future changes in land use and land cover. STSMs are 
grounded in alternative stable state theory and largely powered by a Markov chain. In PSI’s STSM the 
landscape is divided into discreet spatial units, and assigned an initial state based on classifications in 
the National Land Cover Dataset (NLCD) at the initial time step. The Markov chain, derived by analyzing 
NLCD-based development trends between 2001 and 2011, in conjunction with random forest-derived 
spatial multipliers derived establish state transitions for each timestep in a stochastic process which, 
after thousands of iterations, results in a probabilistic indication of the land use/land cover composition 
of the landscape at the ending time step.  
 
Rather than attempting to simulate the entire region at once, a piecemeal approach is progressing by 
individual county, focused initially on four ‘pilot’ counties in the Puget Sound region (King, Pierce, 
Snohomish, and Clallam). These were selected to represent four principal groups that emerged from a 
clustering analysis of counties, based on economic, population, housing, and education attributes that 
are related to growth and development (Appendix 1).  



 
 
Model Development 
PSI has successfully developed STSMs and run 2500 Monte Carlo simulations for each of the four pilot 
counties to forecast land use/land cover change between 2011 and 2016. At the time the model entered 
development, 2016 was selected as the ending time step as it was the most recent NLCD data against 
which PSI was able to evaluate model results. 
 
Model development began by determining lands that were undevelopable and thus excluded from 
consideration in the model (Figure 1). The remaining lands were used to calculate a Markov chain to 
establish the year-over-year transition probabilities for each state class. 
 

 

Figure 1: Undevelopable lands and list of excluded lands. Darker areas indicate lands excluded from consideration in the model. 

 
Transition probabilities were calculated by comparing NLCD classified images from 2001 and 2011. 
Starting with county tax parcels, the NLCD data were aggregated using a majority rule, to yield a 
classification with one land use/land cover category for each parcel in a county. The aggregated NLCDs 
served as inputs to calculate change rasters using GIS. The change rasters identified and tallied all 
parcels that remained in the same state or transitioned from one state to another. This data was used to 
calculate the total change area for each transition type. Total change areas were used to construct a 
matrix presenting probabilities that each state will transition to each of the other states, or remain in 
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the same state (Figure 2). Values from the probability matrix were transferred into the model’s Markov 
chain, which serves to govern the yearly transitions (Figure 3). After the calculation of the Markov chain, 
an initial non-spatial version of the model was constructed to test the ability of the chain to accurately 
estimate LULC area at the 2016 timestep. The results of the initial non-spatial model presented a range 
of the total predicted LULC area at the ending 2016 timestep and, when compared to the observed 
NLCD LULC changes between 2011-2016, the observed fell within the range of predicted (Figure 4). This 
initial finding provided evidence that the State-and-Transition Simulation modeling approach had the 
potential to reasonably forecast future LULC composition. 
 

 
Figure 2: Sample probability matrix. Degrees of ‘Intensity’ refer to development intensity as classified by the NLCD. 

*Combined NLCD Classes: Pasture/Hay, Cultivated Crops 
**Combined NLCD Classes: Perennial Snow/Ice, Barren Land, Deciduous Forest, Evergreen Forest, Mixed Forest, 
Shrub/Scrub, Grassland/Herbaceous, Woody Wetlands, Emergent Herbaceous Wetlands 

 

 
Figure 3: Markov chain derived from probability matrix in Fig. 2. At the model’s highest level, the Markov chain governs yearly 
LULC transitions. 



 

 
Figure 4: Initial non-spatial model results showing that the actual LULC area in 2016 falls within the range of model-predicted 
LULC area. 

 
While the Markov chain is responsible for the model’s yearly proportional transitions, the spatial 
distribution of each transition is governed by a random forest algorithm. The PSI random forest 
algorithm is comprised of 100 individual regression trees individually generated and trained from a 
random bootstrap sampling of the original input data. GIS was used to calculate measurements of 
distances from the center of each parcel to nine dependent variables for each observed LULC transition. 
Based on observations from previous iterations of the model and discussions with John Bolte, the nine 
variables selected consist of: distances to urban growth areas, regional growth centers, manufacturing 
industrial centers, the interstate, other freeway/expressways, principal arterials, minor arterials, major 
collectors, and minor collectors. The inclusion of these variables allowed each regression tree in each 
random forest to take the presence or absence of a LULC transition as well as the distances to the nine 
variables into account when calculating splits in the trees. This ensured that the trees split at the 
distance from one of the variables with the greatest impact on the change in probability that a parcel 
would transition. Each tree calculates regression-based branches from a random slice of the full input 
dataset. Additionally, at each split in each tree the model must select from a subset of seven of the nine 
input variables until it arrives at a final LULC transition probability output. The outputs of all individual 
trees in the forest are then aggregated to provide the average probability a given parcel will transition 
from one LULC to another (Figure 5). This process is repeated for each observed transition during the 
input time period. 
 
In order to be compatible with the model each random forest transition was interpolated to a floating-
point raster surface using an Inverse-Distance Weighted (IDW) method. IDW interpolation was 
performed to spatially direct transition probabilities to future LULC transitions regardless of current 
LULC. For instance, high intensity and forest parcels have different transition probabilities; generally, a 
forest parcel can transition to any other type of parcel but a high intensity parcel can only remain a high 
intensity parcel or transition to a medium intensity parcel. Performing an IDW interpolation on the 
random forest-derived transition probabilities allows the different transition probabilities associated 
with each different type of parcel to be correctly attributed to each parcel if it transitions in the future. 
This transformation from random forest to IDW floating raster allows each raster to function as a spatial 
multiplier within the model to spatially target each transition into the areas defined by its unique forest 
(Figure 6).  



 
Figure 5: Sample random forest. Each tree samples a random slice of the input data to find parcel transitional probabilities. 
Outputs, or predictions, of each tree are averaged to arrive at the final transition probability prediction for each LULC transition 
for every parcel.  
 

 

 

Figure 6: Sample spatial multiplier derived from Pierce County’s agriculture-to-high intensity transition random forest. 
Lighter areas indicate a higher probability of transition from agriculture lands to high intensity development but only 
current and future agriculture parcels that do not intersect undevelopable lands are subject to the transitional probabilities. 



Following the translation of each observed transition from random forest to floating point raster, the 
undevelopable lands were excluded from consideration and the model completed 2500 Monte Carlo 
iterations allowing the different land use/land cover transitions to compete for developable land based 
on their unique spatial multiplier. Individual cell transition probabilities were then aggregated at the 
parcel level to obtain the mean of the parcel’s transitional probability for each possible transition. This 
aggregate output serves as the model’s land use/land cover predictions at the ending timestep (Figure 
7). At the conclusion of 2500 model runs for each of the four pilot counties, focus switched from model 
development to model evaluation for each pilot county. 

 
 
Figure 7: STSM workflow illustrating Agriculture transitions. Steps 2-4 are completed for all observed transitions then model is 
run thousands of times to determine the probabilistic indication of land use/land cover transition at the ending timestep. 

 



Model Evaluation 
Model evaluation consisted of a comparison between the NLCD observed LULC transitions between 
2011 and 2016 and model-predicted transition probabilities at timestep 2016. The percentage of 
observed NLCD transitions between 2011 and 2016 that occurred within areas the STSM found to have a 
non-zero transitional probability was over 99% in each pilot county. It is important to note that in each 
county there were transitions that were observed in the 2001-2011 timeline that did not occur between 
2011-2016, and/or transitions that were not observed in the 2001-2011 timeline that were observed 
between 2011-2016 (Appendix 2). As the model’s input timeframe expands to include more recent NLCD 
data, the differences in transition probability will be reflected in the Markov chain and probability 
matrix. It is also important to note that observed transitions did not necessarily occur in areas that the 
model predicted to be the most probable, only that the transitions occurred in an area that the model 
did predict at least once. Future iterations of the model will seek to improve the precision of predicted 
LULC transitions so that there is a stronger relationship between higher-probability model-predicted 
transition areas and observed transition areas. 
 
Discussion 
Initial model development and evaluation have exceeded initial expectations showing that it is possible 
to forecast development derived from past trends with relatively few variables. However, there are still 
numerous avenues through which the model can be improved and calibrated. 
 
The distance calculation from each parcel to each variable is problematic in that only straight-line 
distance was calculated which does not consider obstacles between a parcel and a given variable. For 
instance, the lands to the southeast of Joint Base Lewis McChord, toward the southern end of the Key 
Peninsula, and on the islands in Puget Sound are considered to be in close proximity to an interstate 
highway when, in fact, the actual distance may be much further or non-existent when obstacles like the 
military base or Puget Sound are accounted for. This problem is particularly acute in Pierce and King 
counties where the Puget Sound divides the land mass into multiple unconnected areas. Altering the 
distance calculation should lead to more nuanced transitional probability calculation and produce more 
realistic LULC distribution on the landscape. 
 
The current iteration of the model treats a county border as a hard stop when the reality is likely quite 
different. Segmenting the model into counties ignores the likelihood that areas near a county border are 
likely influenced as much by a neighboring county as the county in which they reside. Creating a model 
that encompasses all the counties that comprise the Puget Sound would help by holistically forecasting 
Sound-wide future land use rather than segmenting predictions into individual counties. It is possible 
that this could be accomplished by altering the variable distance calculations to include features outside 
a county’s geographic area while retaining county boundaries as the model’s spatial scale to keep 
processing times manageable. 
 
The model’s input variables have shown that LULC transitions can be accurately modeled with relatively 
few variables. However, expanding those variables may help to more precisely forecast LULC changes. 
The model has shown that proximity to the aforementioned variables have an impact on development 
probability, it is likely that the inclusion of additional variables would improve the precision the 
projections. While additional variables are currently unidentified, potentially they would include 
additional parcel characteristics such as area, slope, and taxable value and potentially a range of 
economic and demographic census data. 
 



Despite promising initial results, the model’s relatively short 10-year input timeframe and even shorter 
5-year future projections are perhaps not enough to properly calculate, train and evaluate a model. At 
the time of initial model development, these timeframes were the best that were available. Moving 
forward the model will continue to incorporate the latest 2019 NLCD data which would expand the input 
timeframe to include the years 2001-2019, nearly doubling the Markov chain’s input data. This 
expansion should equate to better transitional predictions in future iterations of the model. 
 
In the process of model development, it became clear that simply including a variable measurement of 
distance from each parcel to the nearest urban growth area (UGA) was not sufficient to precisely project 
future development. As such, it was determined that it would be beneficial in future iterations of the 
model to incorporate a mechanism to proportionally direct projected development inside or outside an 
UGA based on historical observed trends (Appendix 4). 
 
An analysis was conducted using NLCD data between years 2001 and 2019 which found that, during that 
time span, a total of 233.60km2 transitioned from one type of land use to another with 74.75% 
(174.60km2) of transitions occurring within the boundary of a UGA. Examining only the developed class 
transitions – developed high, medium and low intensity and developed open space – that transitioned 
from one type of development to another shows that 88.63% (66.14km2 of 74.62km2) of transitions 
occur within a UGA boundary while examining the non-developed class transitions – agriculture and 
forest – that transitioned to a developed class shows that 78.35% (104.51km2 of 133.39km2) of 
transitions occur within a UGA boundary. Analysis showed that there was a relatively small but not-
insignificant amount of land that transitioned either from a developed class to a non-developed class or 
transitioned between non-developed classes. Of the 25.58km2 that fit this description, 76.03% 
(19.45km2) of these transition cases were either agriculture that transitioned to forest or vice versa 
(14.09km2 and 5.37km2 respectively) with only 0.09% (1.77km2) occurring within a UGA boundary. 
Moving forward, these calculations will be instrumental in funneling LULC transitions into appropriate 
locations on the landscape. 
 
Potential Applications 
Examples of potential applications for PSI’s LULC STSM are: 

1. Project alternate growth scenarios, e.g. compliance with regulations vs. degrees of non-
compliance; or status quo vs. new growth paradigms, possibly in collaboration with Common 
Futures/PSP. 

2. Map future distributions and loadings of toxics and nutrients. The growth projection model will 
be dovetailed with a watershed simulation model (e.g. VELMA) from the start, such that outputs 
of future growth simulations (e.g. relating to water quality, and factors affecting it) can become 
inputs to simulations of future watershed conditions and processes (e.g. under contrasting 
climate warming scenarios). 

3. Assess where growth is likely to occur beyond urban growth boundaries. 
4. Map future distribution of permit-exempt wells. 
5. Map future growth pressure on Critical Areas. 
6. Assess implications of growth and climate scenarios on spatial aspects of environmental justice. 

 
Collective participation and input are needed to design and prioritize applications. 
 
  
 
 



Appendix 1. Clustering of Puget Sound counties based on economic, population, housing, and 
education variables 
  
For each of the 12 Puget Sound counties, data for 23 variables relating to growth and development 
(Table A.1) were assembled from https://ofm.wa.gov/washington-data-research/county-and-city-data. 
These data were used for hierarchical clustering by Ward’s method (Figure A1). 
 
  
Table A1. Variables used in clustering 

  
  

 
Figure A1. Puget Sound counties clustered by economic, population, housing, and education 
characteristics. Four principal clusters are shown by color code. Counties selected for initial land cover 
change projection are marked with green stars. 
  

 
 
 
 
 
 
 
 
  

1 Population, percent change - April 1, 2010 (estimates base) to July 1, 2019, (V2019)

2 Persons 65 years and over, percent

3 White alone, not Hispanic or Latino, percent

4 Veterans, 2015-2019

5 Foreign born persons, percent, 2015-2019

6 Owner-occupied housing unit rate, 2015-2019

7 Median value of owner-occupied housing units, 2015-2019

8 Median gross rent, 2015-2019

9 Persons per household, 2015-2019

10 Living in same house 1 year ago, percent of persons age 1 year+, 2015-2019

11 Language other than English spoken at home, percent of persons age 5 years+, 2015-2019

12 Households with a broadband Internet subscription, percent, 2015-2019

13 Bachelor's degree or higher, percent of persons age 25 years+, 2015-2019

14 Persons without health insurance, under age 65 years, percent

15 Mean travel time to work (minutes), workers age 16 years+, 2015-2019

16 Per capita income in past 12 months (in 2019 dollars), 2015-2019

17 Persons in poverty, percent

18 Total employment, percent change, 2018-2019

19 housing units per capita

20 Building permits per capita

21 In civilian labor force, total, percent of population age 16 years+, 2015-2019

22 Total retail sales per capita, 2012(c)

23 Population per square mile, 2010

https://ofm.wa.gov/washington-data-research/county-and-city-data


Appendix 2. NLCD observed land use/land cover transitions between 2011-2016 against model-
predicted transitions in the four pilot counties. Images show 2016 land use/land cover per the NLCD 
(top) and per STSM (bottom), tables show percentage of land use/land cover transition per the NLCD 
occurred in areas identified by the model as having a non-zero probability of transition,  
 

Pierce County 

  

NLCD 2016 

STSM 2016 



 
 
  



Snohomish County 

 

NLCD 2016 

STSM 2016 



 
 
  



King County 

 
A change in the model was made for King and Clallam Counties to include only developable land. This 
change allowed for faster processing 
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Clallam County 

 
A change in the model was made for King and Clallam Counties to include only developable land. This 
change allowed for faster processing. 
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Appendix 3: Heat maps illustrating areas by likelihood of each model-predicted LULC transition for 
Pierce, Snohomish, King, and Clallam counties. 
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Appendix 4: 2001-2019 LULC UGA analysis illustrating the percentage of each transition that occurs 
within a UGA boundary in each of the four pilot counties – Pierce, Snohomish, King and Clallam. 
 

 



 



 



 


